При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.
Версия для печати и копирования в MS Word
Время | |
Прошло | 0:00:00 |
Осталось | 3:30:00 |
Результат разложения многочлена x (6a − b) + b − 6a на множители имеет вид:
Запишите (11x)y в виде степени с основанием 11.
Решите неравенство
Укажите номер рисунка, на котором показано множество решений системы неравенств
1)
2)
3)
4)
5)
Функции заданы формулами:
1) | 2) | 3) |
4) | 5) |
Выберите функцию, график которой имеет с графиком функции (см. рис.), заданной на промежутке [−5; 6], наибольшее количество точек пересечения.
Четырехугольник MNPK, в котором ∠N=136°, вписан в окружность. Найдите градусную меру угла K.
Точки A(−4; 1) и B(3 ;3) — вершины квадрата ABCD. Периметр квадрата равен:
Результат упрощения выражения при −1 < x < 1 имеет вид:
Среди выражений (−1)6; 60;
(0,6)−1 укажите то, значение которого равно 6.
Найдите объем прямой призмы ABCDA1B1C1D1, в основании которой лежит параллелограмм ABCD, если длины ребер AB и AA1 равны 2 и 1 соответственно, а расстояние точки A1 до прямой CD равно 5.
В окружность радиусом 6 вписан треугольник, длины двух сторон которого равны 9 и 8. Найдите длину высоты треугольника, проведенной к его третьей стороне.
Ответ:
Известно, что при a, равном −2 и 4, значение выражения равно нулю. Найдите значение выражения b + с.
Ответ:
Найдите значение выражения если
Ответ:
Внутренний угол правильного многоугольника равен 135°. Выберите все верные утверждения для данного многоугольника.
1. Многоугольник является восьмиугольником.
2. В многоугольнике 40 диагоналей.
3. Если сторона многоугольника равна 2, то радиус вписанной окружности равен
4. Площадь многоугольника со стороной a можно вычислить по формуле
Ответ запишите в виде последовательности цифр в порядке возрастания. Например: 123.
Ответ:
Выберите все верные утверждения, являющиеся свойствами нечетной функции определённой на
и заданной формулой
при
1. Функция имеет три нуля.
2. Функция убывает на промежутке [5; 7].
3. Максимум функции равен 16.
4. Минимальное значение функции равно −16.
5.
6. Функция принимает отрицательные значения при
7. График функции симметричен относительно оси абсцисс.
Ответ запишите в виде последовательности цифр в порядке возрастания. Например: 123.
Ответ:
Пусть (x; y) — решение системы уравнений
Найдите значение 5y − x.
Ответ:
Найдите площадь боковой поверхности правильной треугольной пирамиды, если длина биссектрисы ее основания равна и плоский угол при вершине
Ответ:
Геометрическая прогрессия со знаменателем 9 содержит 10 членов. Сумма всех членом прогрессии равна 50. Найдите сумму всех членов прогрессии с четными номерами.
Ответ:
Найдите наибольшее целое решение неравенства
Ответ:
Из точки А проведены к окружности радиусом касательная AB (B — точка касания) и секущая, проходящая через центр окружности и пересекающая ее в точках D и C (AD < AC). Найдите площадь S треугольника ABC, если длина отрезка AC в 3 раза больше длины отрезка касательной. В ответ запишите значение выражения 5S.
Ответ:
Градусная мера угла ABC равна 126°. Внутри угла ABC проведен луч BD, который делит данный угол в отношении 1 : 6 (см. рис.). Найдите градусную меру угла 1, если BO — биссектриса угла DBC.
Ответ:
Найдите сумму всех натуральных чисел a, для которых выполняется равенство
Ответ:
При делении натурального числа b на 25 с остатком, отличным от нуля, неполное частное равно 9. К числу b слева приписали некоторое натуральное число а. Полученное натуральное число разделили на 20 и получили 18 в остатке. Найдите число b.
Ответ:
Найдите (в градусах) сумму корней уравнения на промежутке (100°; 210°).
Ответ:
Решите уравнение
В ответ запишите значение выражения где x — корень уравнения.
Ответ:
Через электронный сервис Маша купила билет на концерт и заплатила 80 руб. В эту сумму входит стоимость билета и сервисный сбор 4 руб. За неделю до концерта Маша-решила вернуть билет. По правилам организатора концерта ей вернут не менее 75% стоимости билета. Какую наибольшую сумму (в рублях) может потерять Маша, вернув билет?
Ответ:
Найдите произведение точек минимума функции
Ответ:
Двое рабочих различной квалификации выполнили некоторую работу, причем первый проработал 3 часа, а затем к нему присоединился второй. Если бы сначала второй рабочий работал 3 ч, а затем к нему присоединился первый, то работы была бы закончена на 36 мин позже. Известно, что первый рабочий шестую часть работы выполняет на 2 часа быстрее, чем второй рабочий выполняет третью часть работы. Сколько минут заняло выполнение всех работы?
Ответ:
Найдите сумму квадратов корней (корень, если он единственный) уравнения
Ответ:
Отрезок BD является биссектрисой треугольника АВС, в котором и
По отрезку из точек В и D одновременно навстречу друг другу с постоянными и неравными скоростями начали движение два тела, которые встретились в точке пересечения биссектрис треугольника АВС и продолжили движение, не меняя направления и скорости. Первое тело достигло точки D на 1 минуту 11 секунд раньше, чем второе достигло точки В. За сколько секунд второе тело прошло весь путь от точки D до точки В?
Ответ: